Democratic Fair Allocation of Indivisible Goods
نویسندگان
چکیده
We study the problem of fairly allocating indivisible goods to groups of agents. Agents in the same group share the same set of goods even though they may have different preferences. Previous work has focused on unanimous fairness, in which all agents in each group must agree that their group’s share is fair. Under this strict requirement, fair allocations exist only for small groups. We introduce the concept of democratic fairness, which aims to satisfy a certain fraction of the agents in each group. This concept is better suited to large groups such as cities or countries. We present protocols for democratic fair allocation among two or more arbitrarily large groups of agents with monotonic, additive, or binary valuations. Our protocols approximate both envy-freeness and maximin-share fairness. As an example, for two groups of agents with additive valuations, our protocol yields an allocation that is envy-free up to one good and gives at least half of the maximin share to at least half of the agents in each group.
منابع مشابه
Fair Allocation of Indivisible Goods to Asymmetric Agents
We study fair allocation of indivisible goods to agents with unequal entitlements. Fair allocation has been the subject of many studies in both divisible and indivisible settings. Our emphasis is on the case where the goods are indivisible and agents have unequal entitlements. This problem is a generalization of the work by Procaccia and Wang [20] wherein the agents are assumed to be symmetric ...
متن کاملPopulation Monotonic and Strategy-proof Mechanisms Respecting Welfare Lower Bounds∗
The significance of population monotonicity and welfare bounds is well-recognized in the fair division literature. We characterize population monotonic and incentive compatible mechanisms which allocate the goods efficiently and respect a welfare lower bound chosen in the fair allocation problem of allocating collectively owned indivisible goods or bads when monetary transfers are possible and ...
متن کاملCommunication Complexity of Discrete Fair Division
We initiate the study of the communication complexity of fair division with indivisible goods. We focus on the most well-studied fairness notions (envy-freeness, proportionality, and approximations thereof) and valuation classes (submodular, subadditive and unrestricted). Our results completely resolve whether the communication complexity of computing a fair allocation (or determining that none...
متن کاملDistributed fair allocation of indivisible goods
Distributed mechanisms for allocating indivisible goods are mechanisms lacking central control, in which agents can locally agree on deals to exchange some of the goods in their possession. We study convergence properties for such distributed mechanisms when used as fair division procedures. Specifically, we identify sets of assumptions under which any sequence of deals meeting certain conditio...
متن کاملApproximate Solutions To Max-Min Fair and Proportionally Fair Allocations of Indivisible Goods
Max-min fair allocations and proportionally fair allocations are desirable outcomes in a fair division of indivisible goods. Unfortunately, such allocations do not always exist, not even in very simple settings with few agents. A natural question is to ask about the largest value c for which there is an allocation such that every agent has utility of at least c times her fair share. Our goal is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017